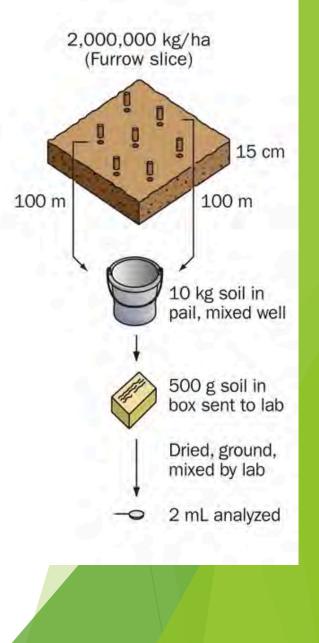

Soil Sampling and Highlights of a Soil Test Report

Birgit Martin

Crop production starts with a good soil sample...

Soil Sampling Procedures


- Take separate samples from fields planted to different crops, different soil types
- Avoid headlands, treed field edges, roadside field edges, dead furrows, eroded knolls, old building sites etc.
- Avoid residue and thatch
- Sample to the depth that the soil would normally be tilled or 6"
- Use a stainless steel probe and plastic pail
 - Galvanized probes and pails can contaminate the sample especially when testing for micronutrients

Soil Sampling Procedures

- Composite sampling
 - Minimum 20 cores from maximum 25 acres
 - Even in small fields or areas, minimum 20 cores to average out small-scale variations
- Sample every 3-4 years to track changes and change management
- > The goal of soil sampling is to direct the optimal rate of soil amendments
 - this directing of crop inputs will only be as good as the soil sample taken

Understanding your soil test report ...

Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

Sample

Reported Date: Jul 26, 2023 Printed Date: Jul 26, 2023

Manual Matter

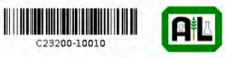
Organic

Phosphorus - P ppm

Danis D4

Disale

Lab


A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS

V

SOIL TEST REPORT

Page:

0/ 10-

CEC

pH

2 / 2

Percent Base Saturations

0/ 0-

Potassium Magnesium Calcium Sodium -11 -O- ----Ma man

Number	Number	Matter	Bica	rb Br	ay-P1	K ppm	Mg ppm	Ca ppm	Na ppn	pH	Buffer	meq/100g	% K	% Mg	% Ca	% H	% Na
5	43817	3.4	141	M 2	6 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	61	Se	8L	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	91	D: 1	OL	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820	4.1	71	1	OL	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfur S ppm		inc ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satur %	ation Ni	litrate trogen 3-N ppm	K/Mg Ratio	ENR	Field ID	
5	13 VL	6.0	н	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G	192	0.05	46		
6	8 VL	3.	3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 VL	. 29.	I VH	15 M	94 VH	1.1 H	0.4H		2 VL	807	0.2	G		0.05	60		
8	11 VL	4.8	BM	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		-
OF VI =	- VEBYLOW	-10W 1	M - MED	IUM H-HIG	H VH - VE	BY HIGH G -	GOOD MA - I	MARGINAL MT	- MODEBAT	E PHYTO-TO	DXIC T	PHYTO-TO	DXIC ST	- SEVE	BE PH	TO-TO)	(IC

LOW, M = MEDIUM, H = HIGH, SEVERE PHYTO-TOXIC

	2012 C. C. C. C.		SOIL FE	RTILIT	Y GUIDEL	INES (Ibs/	(ac)							-
Sample Number	Сгор	Yield Goal	Lime Tons/Acre	N	P205	K20	Mg	Ca	s	Zn	Mn	Fe	Cu	в

There is a lot of information!

Start with CEC

CEC: Cation Exchange Capacity

- Clay and organic matter are negatively charged
- Many nutrients are positively charged (cations)
 - ▶ K, Ca, Mg, NH4
- So CEC is simply a measure of the soils ability to hold and exchange these cations
 - It represents the equilibrium between the soil solution and the soil surfaces
- CEC is a good indication of texture
 - 2-10 sandy
 - 7-25 loam
 - ▶ 20-40 clay

A higher CEC means that more of a nutrient is needed to fill those exchange sites but more is in reserve then for plant nutrition

Understanding your soil test report ...

Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

A & L Canada Laboratories Inc. 2136 Jetstream Road, London, Ontario, N5V 3P5

2136 Jetstream Hoad, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS

Page:

2 / 2

705-282-1509 Reported Date:Jul 26, 2023 Printed Date:Jul 26, 2023 SOIL TEST REPORT

Sample	Lab	Organi	ic Pho	osphorus - F	ppm	Potassium	Magnesium	Calcium	Sodium	p	H	CEC	F	ercent	Base S	aturation	ns
Number	Number	Matte	r Bica	arb E	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meg/100g	% K	% Mg	% Ca	% H	% Na
5	43817	3.4	14	M	26 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	6	L	8L	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	9	Ľ, i	10L	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820	4.1	7	L.	10L	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfu S ppn		Zinc Zn ppm	Manganes Mn ppm	e Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satura %/	Ni	itrate trogen 3-N ppm	K/Mg Ratio	ENR	Field ID	
5	13 V	L I	6.0 H	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G		0.05	46		
6	8 V	L	3.3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 V	L 2	9.1 VH	15 M	94 VH	1.1 H	0.4 H		2 VL	807	0.2	G		0.05	60		
8	11 V		4.8 M	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		

SOIL FERTILITY GUIDELINES (Ibs/ac) Sample Lime **Yield Goal** N Zn Mn Fe Cu в Crop P205 K20 Mg Ca S Tons/Acre Number

Look at Percent Base Saturations next to give an idea of the nutrient status of your soil

Optimum ranges:

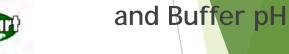
Ca 60-80

K 2-6

H 10-15

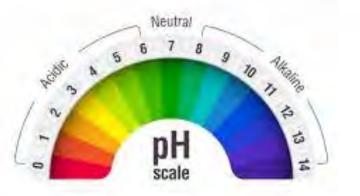
Mg 10-20

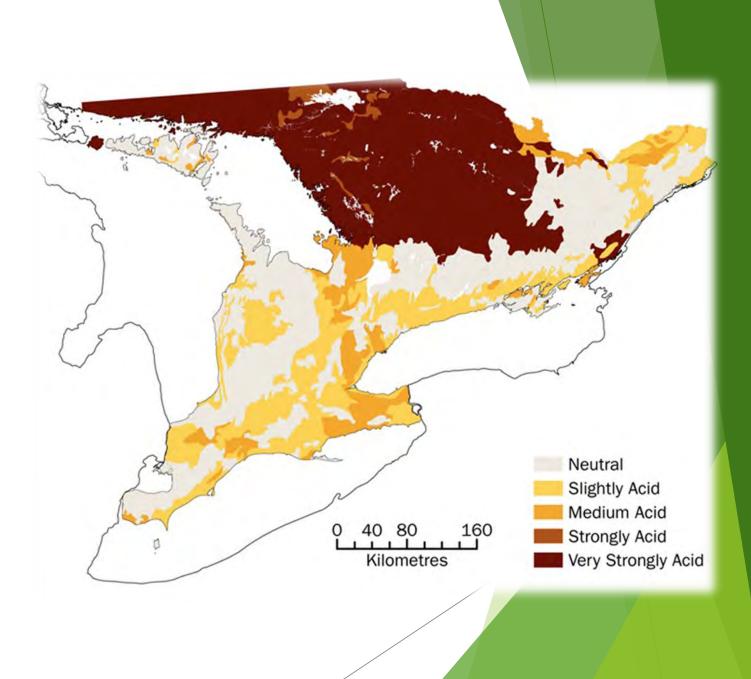
Understanding your soil test report...


Report Number: C23200-10010 Account Number: 97126

A & L Canada Laboratories Inc. 2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN


For: MARTIN FARMS


705-282-1509

Sample	Lab	Organic	Phos	phorus - P p	pm	Potassium	Magnesium	Calcium	Sodium	p	H	CEC	12.1	Percent	Base S	aturation	IS
Number	Number	Matter	Bicarb	Bra	ay-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meq/100g	% K	% Mg	% Ca	% H	% Na
5	43817	3.4	14 M	2	6 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	6L		BL	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	9L	1	DL	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
Barrie Island	43820	4.1	7L	1	DL	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfu S ppm			langanese Mn ppm	lron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satura %A	Nit	itrate rogen -N ppm	K/Mg Ratio	ENR	Field ID	
5	13 VI	_ 6.0	ОН	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G	1.27	0.05	46		
6	8 VI	3.3	3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 VI	_ 29.1	1 VH	15 M	94 VH	1.1H	0.4 H		2 VL	807	0.2	G		0.05	60		
8	11 VI	4.8	BM	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		

SOIL FERTILITY GUIDELINES (IDS/ac Lime Sample Crop **Yield Goal** Ca Zn Mn Fe Cu N P205 K20 Mg S в Number Tons/Acre

Next, look at pH

Northern Ontario soils influenced by Canadian Shield's igneous bedrock

But even Manitoulin's Escarpment base has pockets of acidic soils Report Number: C23200-10010 Account Number: 97126

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

Page:

1 / 2

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON P0P 1H0 Attn: BIRGIT MARTIN 705-282-1509

Reported Date:Jul 26, 2023 Printed Date:Jul 26, 2023 SOIL TEST REPORT

For: MARTIN FARMS

Sample	Lab	Organic	Phosp	horus - P p	pm	Potassium	Magnesium	Calcium	Sodium	P	н	CEC	F	Percent	Base Sa	sturation	s
Number	Number	Matter	Bicarb	Bra	ry-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meq/100g	% K	% Mg	% Ca	% H	% Na
1	43813	4.0	14 M	2	0 L	64 L	299 H	1680 M	24 M	6.4	6.9	12.3	1.3	20.2	68.1	9.5	0.8
2	43814	3.5	12 L	2	0 L	72 L	244 H	1340 M	25 M	6.2	6.8	11.4	1.6	17.8	58.8	20.8	1.0
3	43815	3.6	9 L	1	5 L	77 M	322 H	1680 M	22 M	6.6	6.9	12.5	1.6	21.4	67.0	9.3	0.8
4 Barrie Island	43816	4.9	14 M	1	9 M	167 H	505 H	1530 VL	30 M	6.1	6.5	18.4	2.3	22.9	41.7	32.4	0.7
Sample Number	Sulfu S ppm			anganese Mn ppm	iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satura %A	tion Ni	litrate trogen 3-N ppm	K/Mg Ratio	ENR	Field ID	
1									3 VL	815	0.3	G		0.06	52		
2									3 VL	732	0.4	G		0.09	47		
3									3 VL	666	0.2	G		0.07	48		
4									2 L	970	0.4	G		0.10	62		

SOIL FERTILITY GUIDELINES (Ibs/ac)

Crop	Yield Goal	Lime Tons/Acre	N	P205	К2О	Mg	Ca	s	Zn	Mn	Fe	Cu	E
	Сгор	Crop Yield Goal											

The results of this report relate to the sample submitted and analyzed. All results are released based on acceptable QC data.
^{*} Crop yield is influenced by a number of factors in addition to soil fertility.
No guarantee or warranty concerning crop performance is made by A & L. **Results** As

Beth Wood, Agronomist

Soil pH	Plant Growth
>8.3	Too alkaline for most plants
7.5	Iron availability becomes a problem
7.2	
7.0	6.8 to 7.2 – near neutral
6.8	6.0 to 7.5 – acceptable for most plants
6.0	
5.5	Reduced soil microbial activity
<4.6	Too acid for most plants

- Ca is limited in acid soils which inhibits root development
- H+ ions are toxic to root development
- Rhyzobia become less productive and even die
 - Clover rhizobia killed at pH 4.7
 - Alfalfa rhizobia killed at pH 5.0

pH affects crop growth

Symptoms of low pH

- Poor nodulation of forage legumes and resulting N deficiency
- Poor persistence in perennial forages despite adequate drainage and fertility
- Oats predominant in a mixed grain stand
- Presence of mosses and certain weeds:
 - Wild strawberry
 - Devil's paintbrush
 - Sheep sorrel

Ideal pH ranges for plants

Plant	Soil pH
Alfalfa	6.5-7.5
Barley	5.5-7.0
Blueberries	4.5-5.5
Carrots	6.0-6.8
Corn	5.8-6.8
Potato	5.0-5.5

Crop	Normal Growth pH Range	Recommend pH Range
alfalfa	6.5 - 7.5	6.6 - 7.0
barley	6.3 - 7.0	6.3 - 6.5
Isfoot trefoil	6.0 - 7.0	6.3 - 6.5
clovers	5.8 - 7.0	5.8 - 6.2
corn	5.8 - 7.0	5.8 - 6.2
grasses	5.8 - 7.0	5.8 - 6.2
oats	5.8 - 7.0	5.8 - 6.2
soybeans	6.5 - 7.5	6.6 - 7.0
wheat	6.3 - 7.0	6.3 - 6.5

There is an ideal pH range for all crops

pH affects nutrient availability

Plant Nutrient Availability According to Soil pH Nitrogen primary Phosphorus macronutrients Potassium Sulfur secondary Calcium macronutrients Magnesium iron Manganese micronutrients (trace elements) Copper and Zinc Molybdenum 6.5 7.5 8.5 9.5 10 8 9 more alkaline more acidic neutral

- Generally, plants take up nutrients only if they are dissolved in water
- Soil pH influences the solubility of plant nutrients
- Fixation of nutrients can occur at low or high pH
 - P fixes with Ca and Mg at high pH
 - P fixes with AI at low pH
 - Levels of dissolved Al may reach toxic levels for intolerant species at pH 5.5 and below

Correcting acidic soils

- Lime requirements are based on BUFFER pH
 - pH is a measure of H+ in the soil solution
 - Buffer pH is a measure of H+ and other cations on the CEC ... it is 'reserve acidity'
 - The greater this reserve, the more lime is required

D		ound Limestone		·									
Buffer pH	Target soil pH		Target soil pH										
	= 7.0 ¹	= 6.5 ²	$= 6.0^{3}$	= 5.5 ⁴									
7.0	2	2	1	1									
6.9	3	2	1	1									
6.8	3	2	1	1									
6.7	4	2	2	1									
6.6	5	3	2	1									
6.5 6 3 2 1													
6.4 7 4 3 2													
6.3	8	5	3	2									
6.2	10	6	4	2									
6.1	11	7	5	2									
6.0	13	9	6	3									
5.9	14	10	7	4									
5.8	16	12	8	4									
5.7	18	13	9	5									
5.6	20	15	11	6									
5.5	20	17	12	8									
5.4	20	19	14	9									
5.3	20	20	15	10									
5,2	20	20	17	11									
5.1	20	20	19	13									
5.0	20	20	20	15									
4.9	20	20	20	16									
4.8	20	20	20	18									
4.7	20	20	20	20									
4.6	20	20	20	20									
Liming to pH 7 Add lime if soil Add lime if soil	ultural Index of 75. .0 is recommended pH is below 6.1. pH is below 5.6. pH is below 5.1.	only for club-root c	ontrol on cole crop	S.									

Ontario Lime recommendations

- Calcitic vs Dolomitic lime??
- Max 2-3 tonnes per acre/season
- Reassess every soil sampling cycle

Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS

C23200-10010

Reported	Date:Jul 26, 2023	Printed	Date:Jul 2	6, 2023	SC	IL TEST	REPO	RT			_			Page:	2	1 2	2
Sample	Lab	Organic		sphorus - P		Potassium	Magnesium		Sodium		H	CEC		Percent			
Number	Number	Matter	Bica		Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm		Buffer			% Mg			
5	43817	3.4	141	Ν	26 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	61		8L	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	91	6 A 4	10L	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820	4.1	71		10 L	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfu S ppn		Zinc n ppm	Manganese Mn ppm	e Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satur %	ation N	Nitrate litrogen 03-N ppm	K/Mg Ratio	ENR	Field ID	
5	13 V	L 6	.0 H	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G		0.05	46		
6	8 V	L 3	3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 V	L 29	.1 VH	15 M	94 VH	1.1 H	0.4H		2 VL	807	0.2	G		0.05	60		
8	11 V	L 4	8 M	16 M	101 VH	3.3 VH	0.9 M		2VL	544	0.0	G		0.05	53		
OE	VL = VERY LOW,	L = LOW,	M = MED	IUM, H = HI	GH, VH = VE			MARGINAL, MT		ЕРНУТО-ТС	OXIC, T =	PHYTO-T	OXIC, ST	r = Seve	REPH	үто-то	KIC
Sample Number	Сгор				Yield Goal	Lime Tons/Acre	N	P2O5 K2O	Mg	Ca	s	Zn	Mn	Fe		Cu	в

ORGANIC MATTER:

- Adds greatly to CEC
- Microbes at work and create a reservoir of slowly available nutrients
- Soil tilth
- Water holding capacity

Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS

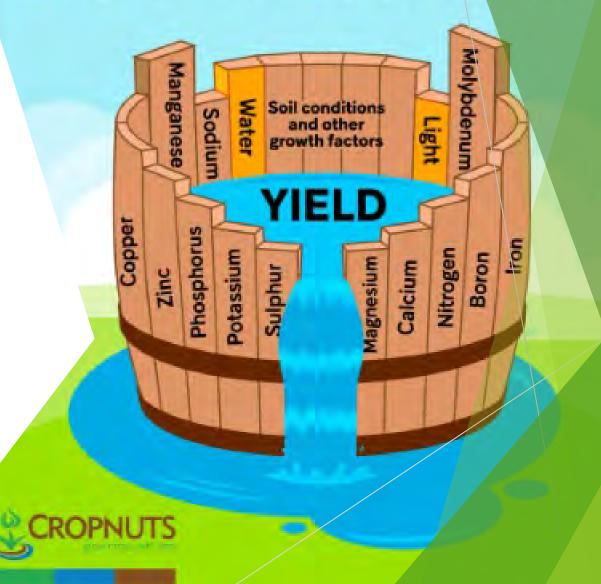
C23200-10010

Reported	d Date:Jul 26, 202	3 P	Printed Dat	e:Jul 26	6, 2023	SC	DIL TEST	REPOR	RT			_		_	Page:	2	/ 2	2
Sample	Lab	0	Irganic	Phos	sphorus - F	P ppm	Potassium	Magnesium	Calciu	m Sodiun	i F	H	CEC	1.17.1	Percent	Base S	aturatio	ns
Number	Numbe	r I	Matter	Bicart	b E	Bray-P1	K ppm	Mg ppm	Ca pp	m Na ppn	n pH	Buffer	meq/100	∫g %K	% Mg	% Ca	% H	% Na
5	43817	7	3.4	14 M	1	26 M	49 L	292 H	1640 N	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	3	4.9	6 L		8L	118 M	623 VH	2060 N	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	9	4.7	9L		10L	54 L	369 H	1740 N	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820)	4.1	7L		10L	77 L	466 H	2190 N	1 24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sull S pr		Zin Zn pj		Manganes Mn ppm		Copper Cu ppm	Boron B ppm	Solubi Salts ms/cn	Saturation %P	Aluminum Al ppm	Satur %	AL	Nitrate Nitrogen 03-N ppm	K/Mg Ratio	ENR	Field ID	
5	13	VL	6.01	H	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G		0.05	46		
6	8	VL	3.31	M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9	VL	29.1	VH	15 M	94 VH	1.1 H	0.4H		2 VL	807	0.2	G		0.05	60		
8	11	VL	4.81	M	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		
ÖE	VL = VERY LOW						RY HIGH, G =			MT = MODERAT				TOXIC, ST			үто-то	XIC
Sample Number	Crop					Yield Goal	Lime Tons/Acre	N I	P205 K	20 Mg	Ca	s	Zn	Mn	Fe		Cu	в

A FEW CONSIDERATIONS FOR P and K:

- Crop to be grown?
- Owned or rented?
 - "soil build" or "crop removal"
- Rely on soil reserves only if levels are high
- Be mindful of "mining"

Owning vs renting may determine nutrient applications


- Own: Build Soil to M levels for macros
 - ▶ P: 12-18 ppm (Olsen)
 - K: 100-130 ppm
 - ► TAKES TIME: our farm...
 - ▶ 1998 K levels 36 ppm (VL)
 - 2023 K levels 92 ppm (M)
 - ▶ P almost doubled but just in M
 - In hindsight we underestimated P removal with our higher yielding crops and overestimated P content in our beef cow manure
- Rent:
 - short term crop removal
 - Long term soil building approach
- Changes your investment but also your yield potential

Soil report points you in the direction of what nutrient might be limiting yield potential If soils are lacking and all other factors are met, crop potential will not be realized

Law of the Minimum

- Build the soil to medium + crop requirements
- Soil building takes time and investment in organic amendments or commercial fertilizer
- 35 Ib actual P fertilizer to increase 1 ppm
 - ▶ = 68 lbs MAP 11-52-0
 - > = 6 tons/ac cow-calf manure
- 19 Ib actual K fertilizer to increase
 1 ppm
 - = 32 lbs potash 0-0-60
 - = 1.5 tons/ac cow-calf manure

Crop Requirements

- Requirements for primary, secondary and micronutrients vary by crop
- Requirements vary with yield
- Requirements for 'whole plant' crops significantly higher, especially in K removal
 - Cereals when straw is harvested
 - Forages
 - Corn silage

Field Crop Nutrient Removal in Ontario (lbs/ac)

CROP	YIELD/ac	Ν	Р	К	Са	Mg	S
Grain Corn	180	153	73	50	1.3	15.7	12.6
Corn Silage	8 ton	206	91	188	37.6	24	14.4
Winter Wheat	100 bu	120	59	36	2.7	16	8
WW + straw	2 ton	148	71	106	26	17.5	18.8
Oats	130 bu	93	33	25	3.5	5.2	8.7
Oats + straw	2 ton	117	46	101	13	7.8	17.7
Soybeans	45 bu	173	38	63	9	7.2	1.5
Canola	60 bu	126	73	37	14	18	19.8
Legume hay	2 ton	111	26	111	51	11	9.2
Mixed hay	2 ton	89	24	93	43	9.6	6.8
Grass hay	2 ton	71	23	84	32	8	6.8

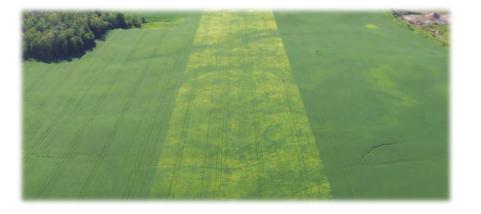
Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS



Sample	Lab	Organic	Phos	phorus - P	ppm	Potassium	Magnesium	Calcium	Sodium	p	Н	CEC	1	Percent	Base S	aturation	IS
Number	Number	Matter	Bicarb	B	ray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meq/1000	%K	% Mg	% Ca	% H	% Na
5	43817	3.4	14 M		26 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	6 L		8L	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	9L	: 1.3	10 L	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820	4.1	7L		10 L	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfur S ppm		inc N ppm	langanese Mn ppm	lron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satura %A	N N	Nitrate itrogen 3-N ppm	K/Mg Ratio	ENR	Field ID	
5	13 VI	6.0) H	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.10	G		0.05	46		
6	8 VI	3.3	3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 VI	29.1	VH	15 M	94 VH	1.1 H	0.4 H		2 VL	807	0.2	G		0.05	60		
8	11 VI	4.8	3 M	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		
OE VI	L = VERY LOW, L	. = LOW, 1	M = MEDIU	M, H = HI	GH, VH = VE			MARGINAL, MT JIDELINES (Ib		РНҮТО-ТС	XIC, T =	PHYTO-TO	OXIC, ST	= SEVE	REPH	уто-то»	lic
Sample Number	Crop				Yield Goal	Lime Tons/Acre	N F	205 K20	Mg	Ca	s	Zn	Mn	Fe		Cu	в

Secondary nutrients S, Ca, Mg

Ca and Mg heavily influenced by parent material

Secondary nutrients Ca, Mg, and S

- S is mobile in soils so soil test an estimate at best
- sulfur in the environment has declined markedly over past decades and fertilizers are purer
- Mg deficiencies more likely in coarse, acidic soils
- Important in chlorophyl
- Interveinal yellowing

- Ca deficiency rare when soil pH in adequate range
- Ca important in cell wall stabilization so new growth lacks integrity

Report Number: C23200-10010 Account Number: 97126

To: NORTHLAND AGROMART RR #2 #10 HWY 540A GORE BAY, ON POP 1H0 Attn: BIRGIT MARTIN 705-282-1509

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: MARTIN FARMS

Sample	Lab	Organic	Pho	sphorus - F	P ppm	Potassium	Magnesiun	Calcium	Sodium	p	H	CEC	1.1	Percent	Base S	aturation	IS
Number	Number	Matter	Bica	rb E	Bray-P1	K ppm	Mg ppm	Ca ppm	Na ppm	pH	Buffer	meq/100	g %K	% Mg	% Ca	% H	% Na
5	43817	3.4	141	N	26 M	49 L	292 H	1640 M	23 M	6.6	6.9	12.0	1.0	20.2	68.2	9.7	0.8
6	43818	4.9	61	<u>1</u>	8L	118 M	623 VH	2060 M	35 M	6.5	6.9	17.1	1.8	30.4	60.3	6.6	0.9
7	43819	4.7	91	<u>De la ser</u> e	10L	54 L	369 H	1740 M	26 M	6.5	6.9	13.9	1.1	23.0	66.8	8.3	0.8
8	43820	4.1	71		10L	77 L	466 H	2190 M	24 M	7.2		15.8	1.2	24.5	69.1	4.4	0.7
Sample Number	Sulfur S ppm		Zinc n ppm	Manganes Mn ppm		Copper Cu ppm	Boron B ppm	Soluble Salts ms/cm	Saturation %P	Aluminum Al ppm	Satura %A	tion N	Nitrate litrogen)3-N ppm	K/Mg Ratio	ENR	Field ID	
5	13 VI	6	6.0 H	18 M	130 VH	2.0 H	0.7 M		8 M	431	0.1	G		0.05	46		
6	8 VI		3.3 M	12L	92 VH	2.3 H	0.6 M		2L	644	0.2	G		0.06	62		
7	9 VI	29	.1 VH	15 M	94 VH	1.1 H	0.4 H		2 VL	807	0.2	G		0.05	60		
8	11 VI	4	M 8.	16 M	101 VH	3.3 VH	0.9 M		2 VL	544	0.0	G		0.05	53		
OE VL	= VERY LOW, I	_ = LOW	M = MED	IUM, H = H	IGH, VH = VE		4 C.	MARGINAL, MT		РНҮТО-ТС	XIC, T =	PHYTO-T	OXIC, ST	= SEVE	REPH	үто-то)	(IC
Sample Number	Crop				Yield Goal	Lime Tons/Acre	N	P2O5 K2O	Mg	Ca	s	Zn	Mn	Fe		Cu	в

Crops vary in their response to micronutrients

Micronutrients can't be overlooked...

- All micronutrients combined account for <0.1% of plant DM
- But are equally important to plant function and yield
- > Yields in Ontario climbing so micros becoming evident
- In Ontario, most common deficiencies are:
 - Zinc
 - Manganese
 - Boron

	Response to micronutrient										
Crop	Mn	В	Cu	Zn	Мо	Fe	CI				
Alfalfa	low	high	high	low	medium						
Asparagus	low	low	low	low	low	medium					
Barley	medium	low	medium	low	low	medium	high				
Blueberry	low	low	medium				•				
Broccoli	medium	high	medium		high	high					
Cabbage	medium	medium	medium	low	medium	medium					
Carrot	medium	medium	medium	low	low						
Cauliflower	medium	high	medium		high	high					
Celery	medium	high	medium		low						
Clover	medium	medium	medium	low	high						
Corn	medium	low	medium	high	low	medium					
Cucumber	high	low	medium								
Dry edible bean	high	low	low	high	medium	high					
Grass	medium	low	low	low	low	high					
Lettuce	high	medium	high	medium	high						
Oats	high	low	high	low	low	medium	medium				
Onion	high	low	high	high	high		192020300000				
Parsnip	medium	medium	medium		low						
Pea	high	low	low	low	medium						
Pepper	medium	low	low	495740	medium						
Peppermint	medium	low	low	low	low	low					
Potato	high	low	low	medium	low						
Radish	high	medium	medium	medium	medium						
Rye	low	low	low	low	low						
Snapbean	high	low	low	high	medium	high					
Sorghum	high	low	medium	high	low	high					
Soybean	high	low	low	medium	medium	high					
Spearmint	medium	low	low	low	low						
Spinach	high	medium	high	high	high	high					
Sudangrass	high	low	high	medium	low	high					
Sugar beet	high	medium	medium	medium	medium	high					
Sweet corn	high	medium	medium	high	low	medium					
Table beet	high	high	high	medium	high	high					
Tomato	medium	medium	high	medium	medium	high					
Turnip	medium	high	medium	NUCLES PORTS	medium						
Wheat	high	low	high	low	low	low	high				

Crops vary in their response to micronutrients

Final thoughts:

- Manure supplies secondary and micronutrients in addition to NPK
- Soil fertility is about the big picture - it's ALL important!
- Soil fertility is technical and complicated so fall back on resources:
 - Soil Fertility Handbook Pub 611
 - Local agronomist

Questions?

sto to